Publications by authors named "F Goudail"

We present a full Stokes polarimeter that utilizes a vortex retarder (VR) in conjunction with a polarization camera. We demonstrate its capability to estimate the full Stokes vector in a single shot with optimal precision and to autocalibrate the VR retardance, ensuring precise measurements even in dynamic environments where retardance is variable.

View Article and Find Full Text PDF

Imaging static Fourier transform spectrometry (isFTS) is used for pushbroom airborne or spaceborne hyperspectral remote sensing. In isFTS, a static two-wave interferometer imprints linear interference fringes over the image of the scene, so that the spectral information is multiplexed over several instantaneous images, and numerical reconstruction is needed to recover the full spectrum for each pixel. The image registration step is crucial since insufficient accuracy leads to artefacts on the images and the estimated spectra.

View Article and Find Full Text PDF

Denoising and demosaicking long-wave infrared (LWIR) division-of-focal-plane (DoFP) polarization images are crucial for various vision applications. However, existing methods rely on the sequential application of individual denoising and demosaicking processes, which may result in the accumulation of errors produced by each process. To address this issue, we propose a joint denoising and demosaicking method for LWIR DoFP images based on a three-stage progressive deep convolutional neural network.

View Article and Find Full Text PDF

Binary annular masks have recently been proposed to extend the depth of field (DoF) of single-molecule localization microscopy. A strategy for designing optimal masks has been introduced based on maximizing the emitter localization accuracy, expressed in terms of Fisher information, over a targeted DoF range. However, the complete post-processing pipeline to localize a single emitter consists of two successive steps: detection, where the regions containing emitters are determined, and localization, where the sub-pixel position of each detected emitter is estimated.

View Article and Find Full Text PDF
Article Synopsis
  • Division of focal plane (DoFP) polarization sensors enable quick linear polarimetric imaging but can suffer from estimation errors due to rapid changes in the scene.
  • The study finds that fluctuations in intensity are the primary factor causing these errors, overshadowing variations in the actual polarization states.
  • By addressing intensity variations within a designated superpixel, the performance of these sensors can match that of advanced demosaicing techniques.
View Article and Find Full Text PDF