Methods based on microarrays (MA), mass spectrometry (MS), and machine learning (ML) algorithms have evolved rapidly in recent years, allowing for early detection of several types of cancer. A pitfall of these approaches, however, is the overfitting of data due to large number of attributes and small number of instances -- a phenomenon known as the 'curse of dimensionality'. A potentially fruitful idea to avoid this drawback is to develop algorithms that combine fast computation with a filtering module for the attributes.
View Article and Find Full Text PDFVariable or feature selection is one of the most important steps in model specification. Especially in the case of medical-decision making, the direct use of a medical database, without a previous analysis and preprocessing step, is often counterproductive. In this way, the variable selection represents the method of choosing the most relevant attributes from the database in order to build a robust learning models and, thus, to improve the performance of the models used in the decision process.
View Article and Find Full Text PDFNeural networks (NNs), in general, and multi-layer perceptron (MLP), in particular, represent one of the most efficient classifiers among the machine learning (ML) algorithms. Inspired by the stimulus-sampling paradigm, it is plausible to assume that the association of stimuli with the neurons in the output layer of a MLP can increase its performance. The stimulus-sampling process is assumed memoryless (Markovian), in the sense that the choice of a particular stimulus at a certain step, conditioned by the whole prior evolution of the learning process, depends only on the network's answer at the previous step.
View Article and Find Full Text PDFPurpose: Explore how efficient intelligent decision support systems, both easily understandable and straightforwardly implemented, can help modern hospital managers to optimize both bed occupancy and utilization costs.
Methods And Materials: This paper proposes a hybrid genetic algorithm-queuing multi-compartment model for the patient flow in hospitals. A finite capacity queuing model with phase-type service distribution is combined with a compartmental model, and an associated cost model is set up.
Scarce healthcare resources require carefully made policies ensuring optimal bed allocation, quality healthcare service, and adequate financial support. This paper proposes a complex analysis of the resource allocation in a hospital department by integrating in the same framework a queuing system, a compartmental model, and an evolutionary-based optimization. The queuing system shapes the flow of patients through the hospital, the compartmental model offers a feasible structure of the hospital department in accordance to the queuing characteristics, and the evolutionary paradigm provides the means to optimize the bed-occupancy management and the resource utilization using a genetic algorithm approach.
View Article and Find Full Text PDF