Tight relationships exist in the local Universe between the central stellar properties of galaxies and the mass of their supermassive black hole (SMBH). These suggest that galaxies and black holes co-evolve, with the main regulation mechanism being energetic feedback from accretion onto the black hole during its quasar phase. A crucial question is how the relationship between black holes and galaxies evolves with time; a key epoch to examine this relationship is at the peaks of star formation and black hole growth 8-12 billion years ago (redshifts 1-3).
View Article and Find Full Text PDFNew optical phasing sensor technologies have been studied with a test bench experiment, called Active Phasing Experiment, on-sky at the European Southern Observatory Very Large Telescope. One of the sensors was of the Shack-Hartmann type using cylindrical lenslets across the segment borders for the measurement of the phasing errors. With bright stars, the precision of the measurement of piston steps at a single border was better than 9 nm wavefront RMS, and the precision of the closed-loop correction of the piston errors of the segments across the whole mirror was better than 10 nm wavefront RMS.
View Article and Find Full Text PDFThe Zernike phase contrast method is a novel technique to phase the primary mirrors of segmented telescopes. It has been tested on-sky on a unit telescope of the Very Large Telescope with a segmented mirror conjugated to the primary mirror to emulate a segmented telescope. The theoretical background of this sensor and the algorithm used to retrieve the piston, tip, and tilt information are described.
View Article and Find Full Text PDFThe primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies.
View Article and Find Full Text PDFWe present a noncontact optical metrology measuring the pistons and tip/tilt angles of the 61 hexagonal segments of a compact-sized segmented mirror. The instrument has been developed within the scope of a design study for the European Extremely Large Telescope (E-ELT). It is used as reference sensor for cophasing of the mirror segments in closed-loop control.
View Article and Find Full Text PDF