The ability to store and release energy efficiently is crucial for advancing sustainable energy technologies, and light-driven molecular isomerization presents a promising solution. However, a persistent challenge in this field is achieving both high stability of the energy-storing photoisomer and establishing efficient catalysis for back-isomerization, a critical process for releasing the stored energy as heat. In this work, we introduce a conceptually new molecular system designed for long-term energy storage, which is based on the reversible isomerization of -methylacetophenone ⇄ benzocyclobutenol.
View Article and Find Full Text PDFA measurement of time-dependent CP violation in D^{0}→π^{+}π^{-}π^{0} decays using a pp collision data sample collected by the LHCb experiment in 2012 and from 2015 to 2018, corresponding to an integrated luminosity of 7.7 fb^{-1}, is presented. The initial flavor of each D^{0} candidate is determined from the charge of the pion produced in the D^{*}(2010)^{+}→D^{0}π^{+} decay.
View Article and Find Full Text PDFPhotocatalysis holds great promise for changing the way value-added molecules are currently prepared. However, many photocatalytic reactions suffer from quantum yields well below 10%, hampering the transition from lab-scale reactions to large-scale or even industrial applications. Molecular dyads can be designed such that the beneficial properties of inorganic and organic chromophores are combined, resulting in milder reaction conditions and improved reaction quantum yields of photocatalytic reactions.
View Article and Find Full Text PDF