Publications by authors named "F Givigliano"

Drowning is an acute respiratory failure as a result from immersion or submersion of the airways in a liquid medium (predominantly water). Inhalation of water causes severe lung damage due to the destruction of pulmonary surfactant, resulting in decreased lung elasticity, alveolar collapse, alteration of ventilation-perfusion ratio, intrapulmonary blood shunting, hypoxia, acute lung injury, and Acute Respiratory Distress Syndrome (ARDS). Poractant alfa (Curosurf®), a natural surfactant effective in the treatment of newborn respiratory distress, has been used in various forms of ARDS, but in drowning syndromes, experience is still poor.

View Article and Find Full Text PDF

Secretome of primary cultures is an accessible source of biological markers compared to more complex and less decipherable mixtures such as serum or plasma. The protonation state (PS) of secretome reflects the metabolism of cells and can be used for cancer early detection. Here, we demonstrate a superhydrophobic organic electrochemical device that measures PS in a drop of secretome derived from liquid biopsies.

View Article and Find Full Text PDF

The clinical development of locally and advanced non-small cell lung cancer (NSCLC) suffers from a lack of biomarkers as a guide in the selection of optimal prognostic prediction. Circulating Tumour Cells (CTCs) are correlated to prognosis and show efficacy in cancer monitoring in patients. However, their enumeration alone might be inadequate; it might also be critical to understand the viability, the apoptotic state and the kinetics of these cells.

View Article and Find Full Text PDF

The synthesis of a novel functional biomaterial for wound healing treatment was carried out by adopting a free-radical grafting procedure in aqueous media. With this aim, ciprofloxacin (CFX) was covalently incorporated into collagen (T1C) chains employing an ascorbic acid/hydrogen peroxide redox pair as biocompatible initiator system. The covalent insertion of CFX in the polymeric chains was confirmed by FT-IR and UV analyses, while an antibacterial assay demonstrated the activity of the synthesized conjugate against Staphylococcus aureus and Escherichia coli, microorganisms that commonly infect wounds.

View Article and Find Full Text PDF