Publications by authors named "F Gisou Van der Goot"

Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function.

View Article and Find Full Text PDF

SARS-CoV-2 infection requires Spike protein-mediated fusion between the viral and cellular membranes. The fusogenic activity of Spike depends on its post-translational lipid modification by host S-acyltransferases, predominantly ZDHHC20. Previous observations indicate that SARS-CoV-2 infection augments the S-acylation of Spike when compared to mere Spike transfection.

View Article and Find Full Text PDF

S-acylation is a covalent post-translational modification of proteins with fatty acids, achieved by enzymatic attachment via a labile thioester bond. This modification allows for dynamic control of protein properties and functions in association with cell membranes. This lipid modification regulates a substantial portion of the human proteome and plays an increasingly recognized role throughout the lifespan of affected proteins.

View Article and Find Full Text PDF

With a limited number of genes, cells achieve remarkable diversity. This is to a large extent achieved by chemical posttranslational modifications of proteins. Amongst these are the lipid modifications that have the unique ability to confer hydrophobicity.

View Article and Find Full Text PDF

The complex architecture of the endoplasmic reticulum (ER) comprises distinct dynamic features, many at the nanoscale, that enable the coexistence of the nuclear envelope, regions of dense sheets and a branched tubular network that spans the cytoplasm. A key player in the formation of ER sheets is cytoskeleton-linking membrane protein 63 (CLIMP-63). The mechanisms by which CLIMP-63 coordinates ER structure remain elusive.

View Article and Find Full Text PDF