In a world with constant population growth, and in the context of climate change, the need to supply the demand of safe crops has stimulated an interest in ecological products that can increase agricultural productivity. This implies the use of beneficial organisms and natural products to improve crop performance and control pests and diseases, replacing chemical compounds that can affect the environment and human health. Microbial biological control agents (MBCAs) interact with pathogens directly or by inducing a physiological state of resistance in the plant.
View Article and Find Full Text PDFThe process of carbon capture and sequestration has been proposed as a method of mitigating the build-up of greenhouse gases in the atmosphere. If implemented, the cost of electricity generated by a fossil fuel-burning power plant would rise substantially, owing to the expense of removing CO2 from the effluent stream. There is therefore an urgent need for more efficient gas separation technologies, such as those potentially offered by advanced solid adsorbents.
View Article and Find Full Text PDFCu-SSZ-13 is a highly active NH-SCR catalyst for the abatement of harmful nitrogen oxides (NO , = 1, 2) from the exhausts of lean-burn engines. The study of Cu-speciation occurring upon thermal dehydration is a key step for the understanding of the enhanced catalytic properties of this material and for identifying the SCR active sites and their redox capability. Herein, we combined FTIR, X-ray absorption (XAS) and emission (XES) spectroscopies with DFT computational analysis to elucidate the nature and location of the most abundant Cu sites in the activated catalyst.
View Article and Find Full Text PDFIn the typical NH3-SCR temperature range (100-500 °C), ammonia is one of the main adsorbed species on acidic sites of Cu-SSZ-13 catalyst. Therefore, the study of adsorbed ammonia at high temperature is a key step for the understanding of its role in the NH3-SCR catalytic cycle. We employed different spectroscopic techniques to investigate the nature of the different complexes occurring upon NH3 interaction.
View Article and Find Full Text PDFHerein we report FTIR in situ adsorption of molecular hydrogen, carbon monoxide, water, methanol, pyridine and 2,4,6-trimethylpyridine (collidine) on nanosheet H-ZSM-5 which was recently studied in the methanol to hydrocarbons (MTH) reaction. The nature of the hydroxyl groups and surface species are described in detail. The IR spectrum of nanosheet H-ZSM-5 is dominated by silanols, which saturate the external surfaces.
View Article and Find Full Text PDF