Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures.
View Article and Find Full Text PDFProtein tyrosine phosphatase SHP2 mediates RAS-driven MAPK signaling and has emerged in recent years as a target of interest in oncology, both for treating with a single agent and in combination with a KRAS inhibitor. We were drawn to the pharmacological potential of SHP2 inhibition, especially following the initial observation that drug-like compounds could bind an allosteric site and enforce a closed, inactive state of the enzyme. Here, we describe the identification and characterization of (formerly RLY-1971), a SHP2 inhibitor currently in clinical trials in combination with KRAS G12C inhibitor divarasib (GDC-6036) for the treatment of solid tumors driven by a KRAS G12C mutation.
View Article and Find Full Text PDFFragment-based drug discovery has led to six approved drugs, but the small sizes of the chemical fragments used in such methods typically result in only weak interactions between the fragment and its target molecule, which makes it challenging to experimentally determine the three-dimensional poses fragments assume in the bound state. One computational approach that could help address this difficulty is long-timescale molecular dynamics (MD) simulations, which have been used in retrospective studies to recover experimentally known binding poses of fragments. Here, we present the results of long-timescale MD simulations that we used to prospectively discover binding poses for two series of fragments in allosteric pockets on a difficult and important pharmaceutical target, protein tyrosine phosphatase 1b (PTP1b).
View Article and Find Full Text PDFThiazolidinedione PPARγ agonists such as rosiglitazone and pioglitazone are effective antidiabetic drugs, but side effects have limited their use. It has been posited that their positive antidiabetic effects are mainly mediated by the inhibition of the CDK5-mediated Ser273 phosphorylation of PPARγ, whereas the side effects are linked to classical PPARγ agonism. Thus compounds that inhibit PPARγ Ser273 phosphorylation but lack classical PPARγ agonism have been sought as safer antidiabetic therapies.
View Article and Find Full Text PDF