Publications by authors named "F Gelain"

The use of self-assembling peptide hydrogels in the treatment of spinal cord and brain injuries, especially when combined with adult neural stem cells, has shown great potential. To advance tissue engineering, it is essential to understand the effect of mechanochemical signaling on cellular differentiation. The elucidation of the molecular interactions at the level of the neuronal membrane still represents a promising area of investigation for many drug delivery and tissue engineering applications.

View Article and Find Full Text PDF

Piezoelectric materials can provide electrical stimulation without external chemical or physical support, opening new frontiers for future bioelectric therapies. Polyvinylidene fluoride (PVDF) possesses piezoelectricity and biocompatibility, making it an electroactive biomaterial capable of enhancing bioactivity through instantaneous electrical stimulation, which indicates significant potential in tissue engineering. In this study, we developed electroactive and biomimetic scaffolds made of electrospun PVDF and self-assembling peptides (SAPs) to enhance stem cell transplantation for spinal cord injury regeneration.

View Article and Find Full Text PDF

Self-assembling peptides (SAPs) have gained significant attention in biomedicine because of their unique properties and ability to undergo molecular self-assembly driven by non-covalent interactions. By manipulating their composition and structure, SAPs can form well-ordered nanostructures with enhanced selectivity, stability and biocompatibility. SAPs offer advantages such as high chemical and biological diversity and the potential for functionalization.

View Article and Find Full Text PDF

The development of three-dimensional (3D) biomaterials that mimic natural tissues is required for efficiently restoring physiological functions of injured tissues and organs. In the field of soft hydrogels, self-assembled peptides (SAPs) stand out as distinctive biomimetic scaffolds, offering tunable properties. They have garnered significant attention in nanomedicine due to their innate ability to self-assemble, resulting in the creation of fibrous nanostructures that closely mimic the microenvironment of the extracellular matrix (ECM).

View Article and Find Full Text PDF

Spinal cord regeneration using stem cell transplantation is a promising strategy for regenerative therapy. Stem cells transplanted onto scaffolds that can mimic natural extracellular matrix (ECM) have the potential to significantly improve outcomes. In this study, we strived to develop a cell carrier by culturing neural stem cells (NSCs) onto electrospun 2D and 3D constructs made up of specific crosslinked functionalized self-assembling peptides (SAPs) featuring enhanced biomimetic and biomechanical properties.

View Article and Find Full Text PDF