The Nucleic Acid InfraRed Data Bank (NAIRDB) serves as a comprehensive public repository dedicated to the archival and free distribution of Fourier transform infrared (FTIR) spectral data specific to nucleic acids. This database encompasses a collection of FTIR spectra covering diverse nucleic acid molecules, including DNA, RNA, DNA/RNA hybrids and their various derivatives. NAIRDB covers details of the experimental conditions for FTIR measurements, literature links, primary sequence data, information about experimentally determined structures for related nucleic acid molecules and/or computationally modeled 3D structures.
View Article and Find Full Text PDFInteractions between proteins and single-stranded DNA (ssDNA) are crucial for many fundamental biological processes, including DNA replication and genetic recombination. Thus, understanding detailed mechanisms of these interactions is necessary to uncover regulatory rules occurring in all living cells. The RNA-binding Hfq is a pleiotropic bacterial regulator that mediates many aspects of nucleic acid metabolism.
View Article and Find Full Text PDFFucoidan is a natural sulfated polysaccharide with a large range of biological activities including anticancer and anti-oxidation activities. Hepatocellular carcinoma is the fourth most common aggressive cancer type. The aim of this study was to investigate the bioactivity of free fucoidan versus its vectorization using nanoparticles (NPs) in human hepatoma cells, Huh-7.
View Article and Find Full Text PDFFourier transform infrared (FTIR) and circular dichroism (CD) spectroscopies are fast techniques providing important information about the conformation of nucleic acids and proteins. These vibrational and electronic absorption spectroscopies are extremely sensitive to any change in molecular structure. While numerous reviews describe how to analyze DNA structure alone or in the presence of proteins using FTIR and CD, analyses of RNA are scarce.
View Article and Find Full Text PDFFourier transform infrared (FTIR) spectroscopy has been widely used for the analysis of both protein and nucleic acid secondary structure. This is one of the vibration spectroscopy methods that are extremely sensitive to any change in molecular structure. While numerous reports describe how to proceed to analyze protein and deoxyribonucleic acid (DNA) structures using FTIR, reports related to the analyses of ribonucleic acids (RNAs) are few.
View Article and Find Full Text PDF