Background: Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is a very challenging disease with a very poor prognosis. It is characterized by a dense desmoplastic stroma that hampers drug penetration and limits the effectiveness of conventional chemotherapy (CT). As an alternative, the combination of CT with hyperthermia (HT) has been proposed as an innovative treatment modality for PDAC.
View Article and Find Full Text PDFAnastomotic leak occurrence is a severe complication after colorectal surgery. Considering the difficulty of treating these leaks and their impact on patient care, there is a strong need for an efficient prevention strategy. We evaluated a combination of extracellular vesicles (EVs) from rat adipose-derived stromal cells with a thermoresponsive gel, Pluronic® F127 (PF-127) to prevent anastomotic leaks.
View Article and Find Full Text PDFPhototherapy is a low-risk alternative to traditional antibiotics against drug-resistant bacterial infections. However, optimizing phototherapy agents, refining treatment conditions, and addressing misuse of agents, remain a formidable challenge. This study introduces a novel concept leveraging the unique customizability of metal-organic frameworks (MOFs) to house size-matched dye molecules in "single rooms".
View Article and Find Full Text PDFFjord systems in the Norwegian Arctic are experiencing an increasing frequency and magnitude of marine heatwaves. These episodic heat stress events can have varying degrees of acute impacts on primary production and nutrient uptake of mixed kelp communities, as well as modifying the biogeochemical cycling in nearshore systems where vast areas of kelp create structural habitat. To assess the impact of future marine heatwaves on kelp communities, we conducted a 23 day mesocosm experiment exposing mixed kelp communities to warming and heatwave scenarios projected for the year 2100.
View Article and Find Full Text PDF