The temporal evolution of weak shocks in radiative media is theoretically investigated in this work. The structure of radiative shocks has traditionally been studied in a stationary framework. Their systematic classification is complex because layers of optically thick and thin regions alternate to form a radiatively driven precursor and a temperature-relaxation layer, between which the hydrodynamic shock is embedded.
View Article and Find Full Text PDFThree-dimensional magnetohydrodynamic simulations are able to model the generation of disk-shaped plasma, driven by laser ablation from a current-carrying rod in a pulsed-power machine producing azimuthal magnetic fields of 2-3 MG. The plasma at such extreme conditions is unique in that the parameter space for the plasma β and Hall parameter χ transition from below unity to greater than unity at different stages of the plasma generation. In simulations, the formation of the plasma disk in the azimuthal direction is driven by heat flux from the laser spot and depends on the set of transport coefficients used in simulations.
View Article and Find Full Text PDFMagnetized target fusion approach to inertial confinement fusion involves the formation of strong shocks that travel along a magnetized plasma. Shocks, which play a dominant role in thermalizing the upstream kinetic energy generated in the implosion stage, are seldom free from perturbations, and they wrinkle in response to upstream or downstream disturbances. In Z-pinch experiments, significant plasma instability mitigation was observed with pre-embedded axial magnetic fields.
View Article and Find Full Text PDFThe theory of magnetic flux conservation is developed for a subsonic plasma implosion and used to describe the magnetic flux degradation in the MagLIF concept [S. A. Slutz et al.
View Article and Find Full Text PDF