Publications by authors named "F Garcia-Blanco"

This work reports the experimental measurements of solvent acidity (SA), basicity (SB), and solvent dipolarity and polarizability (SPP) for water solutions with urea (U) and its molecular derivatives, monomethyl-urea (MU), 1,3-dimethyl-urea (DMU) and tetramethyl-urea (TMU). These solvatochromic parameters are applied to understanding the variation of indexes of refraction and densities and other physico-chemical properties reported for these solutions. These properties are well correlated to the SA, SB, and SPP solvent parameters of these solutions.

View Article and Find Full Text PDF

The empirical solvent scales for polarizability (SP), dipolarity (SdP), acidity (SA), and basicity (SB) have been successfully used to interpret the solvatochromism of compounds dissolved in organic solvents and their solvent mixtures. Providing that the published solvatochromic parameters for the ionic liquids 1-(1-butyl)-3-methylimidazolium tetrafluoroborate, [BMIM][BF4] and 1-(1-butyl)-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], are excessively widespread, their SP, SdP, SA, and SB values are measured herein at temperatures from 293 to 353 K. Four key points are emphasized herein: (i) the origin of the solvatochromic solvent scales--the gas phase, that is the absence of any medium perturbation--; (ii) the separation of the polarizability and dipolarity effects; (iii) the simplification of the probing process in order to obtain the solvatochromic parameters; and (iv) the SP, SdP, SA, and SB solvent scales can probe the polarizability, dipolarity, acidity, and basicity of ionic liquids as well as of organic solvents and water-organic solvent mixtures.

View Article and Find Full Text PDF

In this work, we present a novel method to produce thermoresponsive, monodisperse microgels which display temperature-dependent photoluminescence. The system is based on bimetallic cores of Au@Ag encapsulated within thermoresponsive poly(N-isopropylacrylamide) microgels and coated with a photoluminescent polymer (poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (PTEBS) using the Layer-by-Layer technique. The electromagnetic radiation used to excite the PTEBS induces a local electromagnetic field on the surface of the bimetallic cores that enhances the excitation and emission rates of the PTEBS, yielding a metal enhanced fluorescence (MEF).

View Article and Find Full Text PDF

The α-splice variant of p73 (p73α), a homologue of the tumour suppressor p53, has close to its C terminus a sterile alpha motif (SAM), SAMp73, that is involved in protein-biomolecule interactions. The conformational stability of SAMp73 is low (∼5 kcal mol(-1)), although its thermal stability is high. To explain this high thermostability, we studied the dynamics of SAMp73 over a wide range of GdmCl (guanidine hydrochloride) concentrations and temperatures by NMR relaxation, NMR hydrogen-exchange (HX) and fluorescence lifetime approaches.

View Article and Find Full Text PDF

Nucleotide-binding cystathionine β-synthase (CBS) domains function as regulatory motifs in several proteins distributed through all kingdoms of life. This function has been proposed based on their affinity for adenosyl-derivatives, although the exact binding mechanisms remain largely unknown. The question of how CBS domains exactly work is relevant because in humans, several genetic diseases have been associated with mutations in those motifs.

View Article and Find Full Text PDF