Ultrafast decay of optical phonons has been studied in wide-bandgap BaSnO and SrTiO perovskites using nonlinear spectroscopy with 120 femtosecond time resolution. The coherent Raman mode excitations have been selected and traced with tunable optical pulses. Decay of symmetry forbidden modes of vibrations have been detected directly in time.
View Article and Find Full Text PDFWe report on the design and performance of a time-resolved Coherent Raman spectroscopy system with time resolution of better than 120 fs. The coherent transients can be traced with more than 75 dB dynamic range while accessing and probing Raman active modes across a 250-2400 cm frequency. The system delivers an equivalent spectral resolution of better than 0.
View Article and Find Full Text PDFWe demonstrate an effective microspectroscopy technique by tracing the dispersion of second order nonlinear optical susceptibility in single atomic layer materials. The experimental method relies on the detection of single-shot second harmonic (SH) spectra from the materials and the subsequent data normalization. The key point in our study is that we used a broadband (˜350 nm) near-infrared femtosecond continuum pulses generated at high repetition rates in a photonic crystal fiber with superior spatial quality and stable spectral power density.
View Article and Find Full Text PDFUsing an optical system made from fused silica catalogue optical components, third-order nonlinear microscopy has been enabled on conventional Ti:sapphire laser-based multiphoton microscopy setups. The optical system is designed using two lens groups with straightforward adaptation to other microscope stands when one of the lens groups is exchanged. Within the theoretical design, the optical system collects and transmits light with wavelengths between the near ultraviolet and the near infrared from an object field of at least 1 mm in diameter within a resulting numerical aperture of up to 0.
View Article and Find Full Text PDFWe propose and experimentally demonstrate a method that is capable of resolving both real and imaginary parts of third-order nonlinearity (χ(3)) in the vicinity of Raman resonances. Dispersion of χ(3) can be obtained from a medium probed within microscopic volumes with a spectral resolution of better than 0.10 cm(-1).
View Article and Find Full Text PDF