Since the discovery of the genetic origin of the circadian clock in Drosophila melanogaster by Konopka and Benzer in 1971, most of the research about the regulation of the molecular circadian clock relies on laboratory models. Additional models such as Cyanobacteria, Neurospora crassa, Arabidopsis and rodents helped chronobiologists to describe the species-specific molecular clocks and their regulation. However, the lack of tools and the difficulty to access biological samples somehow excluded human from this research landscape outside behavioural research.
View Article and Find Full Text PDFIntroduction: Most mammalian physiology is orchestrated by the circadian clock, including drug transport and metabolism. As a result, efficacy and toxicity of many drugs are influenced by the timing of their administration, which has led to the establishment of the field of chronopharmacology.
Areas Covered: In this review, the authors provide an overview of the current knowledge about the time-of-day dependent aspects of drug metabolism and the importance of chronopharmacological strategies for drug development.
The synchronization of circadian clock depends on a central pacemaker located in the suprachiasmatic nuclei. However, the potential feedback of peripheral signals on the central clock remains poorly characterized. To explore whether peripheral organ circadian clocks may affect the central pacemaker, we used a chimeric model in which mouse hepatocytes were replaced by human hepatocytes.
View Article and Find Full Text PDF