Elevation in left ventricular (LV) myocardial stiffness is a key remodeling-mediated change that underlies the development and progression of heart failure (HF). Despite the potential diagnostic value of quantifying this deterministic change, there is a lack of enabling techniques that can be readily incorporated into current clinical practice. To address this unmet clinical need, we propose a simple protocol for processing routine echocardiographic imaging data to provide an index of left ventricular myocardial stiffness, with protocol specification for patients at risk for heart failure with preserved ejection fraction.
View Article and Find Full Text PDFLeft ventricular pressure overload (LVPO) can lead to heart failure with a preserved ejection fraction (HFpEF) and LV chamber stiffness (LV ) is a hallmark. This project tested the hypothesis that the development of HFpEF due to an LVPO stimulus will alter posttranscriptional regulation, specifically microRNAs (miRs). LVPO was induced in pigs ( = 9) by sequential ascending aortic cuff and age- and weight-matched pigs ( = 6) served as controls.
View Article and Find Full Text PDFBackground: Obstructive sleep apnea (OSA) has been linked to cytokine-mediated chronic inflammatory states. Continuous positive airway pressure (CPAP) is an established therapy for OSA, but its effects on inflammation remain unclear. A recent study from our group identified soluble cytokine receptors altered in OSA patients and modified by CPAP adherence.
View Article and Find Full Text PDFDrug-coated balloon (DCB) therapy is a promising endovascular treatment for obstructive arterial disease. The goal of DCB therapy is restoration of lumen patency in a stenotic vessel, whereby balloon deployment both mechanically compresses the offending lesion and locally delivers an antiproliferative drug, most commonly paclitaxel (PTX) or derivative compounds, to the arterial wall. Favorable long-term outcomes of DCB therapy thus require predictable and adequate PTX delivery, a process facilitated by coating excipients that promotes rapid drug transfer during the inflation period.
View Article and Find Full Text PDFBackground: Standardized exercise protocols have been shown to improve overall cardiovascular fitness, but direct effects on left ventricular (LV) function, particularly diastolic function and relation to post-transcriptional molecular pathways (microRNAs (miRs)) are poorly understood. This project tested the central hypothesis that adaptive LV remodeling resulting from a large animal exercise training protocol, would be directly associated with specific miRs responsible for regulating pathways relevant to LV myocardial stiffness and geometry.
Methods And Results: Pigs (n = 9; 25 Kg) underwent a 4 week exercise training protocol (10 degrees elevation, 2.