C measurements on the carbonaceous fractions of atmospheric aerosol are an important tool for source apportionment. In this paper, a C-based source apportionment study was carried out on samples collected during winter 2021 at an urban background site in the Po Valley, one of the main pollution hot-spot areas in Europe. The samples were prepared using MISSMARPLE (MIlan Small-SaMple Automated Radiocarbon Preparation LinE for atmospheric aerosol), a recently developed sample preparation line for C measurements on atmospheric aerosol carbon fractions, specifically targeting small samples (about 50 μgC).
View Article and Find Full Text PDFThe airborne transmission of bacterial pathogens poses a significant challenge to public health, especially with the emergence of antibiotic-resistant strains. This study investigated environmental factors influencing the survival of airborne bacteria, focusing on the effects of different carbon dioxide (CO) and dust concentrations. The experiments were conducted in an atmospheric simulation chamber using the non-resistant wild-type K12 (JM109) and a multi-resistant variant (JM109-pEC958).
View Article and Find Full Text PDFElectrochemical energy storage systems based on sulfur and lithium can theoretically deliver high energy with the further benefit of low cost. However, the working mechanism of this device involves the dissolution of sulfur to high-molecular weight lithium polysulfides (LiPs with general formula LiS, n≥4) in the electrolyte during the discharge process. Therefore, the resulting migration of partially dissociated LiPs by diffusion or under the effect of the electric field to the lithium anode, activates an internal shuttle mechanism, reduces the active material and in general leads to loss of performance and cycling stability.
View Article and Find Full Text PDF