Publications by authors named "F G Mastronardi"

A convenient synthesis of four new enantiomerically pure acidic amino acids is reported and their affinity at ionotropic glutamate receptors was determined. The new compounds are higher homologues of glutamic acid in which the molecular complexity has been increased by introducing an aromatic/heteroaromatic ring, that is a phenyl or a thiophene ring, that could give additional electronic interactions with the receptors. The results of the present investigation indicate that the insertion of an aromatic/heteroaromatic ring into the amino acid skeleton of glutamate higher homologues is well tolerated and this modification could be exploited to generate a new class of NMDA antagonists.

View Article and Find Full Text PDF

Following the concept that increasing the molecular complexity may enhance the receptor selectivity, we replaced the 3-hydroxy-isoxazoline ring of model compound tricholomic acid with a 3-hydroxy-pyrazoline ring, which could be variously decorated at the N1 position, inserting groups characterized by different electronic and steric properties. Binding assays on rat brain synaptic membranes showed that, depending on the nature of the substituent, some of the new synthesized ligands interacted with either AMPA or KA receptors, with affinities in the mid-micromolar range.

View Article and Find Full Text PDF

A continuous process for generation, separation, and reactions of anhydrous diazomethane in a tube-in-tube reactor was developed. The inner tube of the reactor is made of hydrophobic, gas-permeable Teflon AF-2400. The diazomethane is formed in the inner tube and then diffuses through the permeable membrane into the outer chamber and subsequently reacts in the solution carried within.

View Article and Find Full Text PDF

A synthetic method for the preparation of suitably protected 3-carboxy-Δ2-pyrazolin-5-yl-alanine was developed. This scaffold is amenable to further decoration at the N1 position and was used to generate novel NMDA receptor ligands. Although weaker than the previously reported N1-Ph derivatives, the new ligands retain the ability to selectively bind to NMDA receptor with micromolar to submicromolar affinity.

View Article and Find Full Text PDF

Progressive loss of visual function frequently accompanies demyelinating diseases such as multiple sclerosis (MS) and is hypothesized to be the result of damage to the axons and soma of neurons. Here, we show that dendritic impairment is also involved in these diseases. Deimination, a posttranslational modification, was reduced in the retinal ganglion cell layer of MS patients and in a transgenic mouse model of MS (ND4 mice).

View Article and Find Full Text PDF