Dosimetry of ultra-high dose rate beams is one of the critical components which is required for safe implementation of FLASH radiotherapy (RT) into clinical practice. In the past years several national and international programmes have emerged with the aim to address some of the needs that are required for translation of this modality to clinics. These involve the establishment of dosimetry standards as well as the validation of protocols and dosimetry procedures.
View Article and Find Full Text PDF. This investigation aims to experimentally determine the charge collection efficiency (CCE) of six commercially available parallel-plate ionisation chamber (PPIC) models in ultra-high dose-per-pulse (UHDPP) electron beams..
View Article and Find Full Text PDFThis work aims at investigating the response of various thermally stimulated luminescence detectors (TLDs) and optically stimulated luminescence detectors (OSLDs) for dosimetry of ultra-high dose rate electron beams. The study was driven by the challenges of dosimetry at ultra-high dose rates and the importance of dosimetry for FLASH radiotherapy and radiobiology experiments.Three types of TLDs (LiF:Mg,Ti; LiF:Mg,Cu,P; CaF:Tm) and one type of OSLD (AlO:C) were irradiated in a 15 MeV electron beam with instantaneous dose rates in the (1-324) kGy srange.
View Article and Find Full Text PDFThe SwissFEL soft X-ray free-electron laser (FEL) beamline Athos will be ready for user operation in 2021. Its design includes a novel layout of alternating magnetic chicanes and short undulator segments. Together with the APPLE X architecture of undulators, the Athos branch can be operated in different modes producing FEL beams with unique characteristics ranging from attosecond pulse length to high-power modes.
View Article and Find Full Text PDF