Publications by authors named "F Formelli"

Tamoxifen and fenretinide have been extensively studied and exhibit breast cancer-preventing activity. We aimed to assess their effect on sex hormones, sex hormone binding globulin (SHBG) and retinol, and their association with mammographic density (MD) and breast cancer events. In a double-blind, placebo-controlled trial, premenopausal women at risk for breast cancer were randomized to tamoxifen 5 mg/day, fenretinide, both agents, or placebo for 2 years.

View Article and Find Full Text PDF

Raf/MEK/ERK signaling can inhibit the liver kinase B1-AMP-activated protein kinase (LKB1-AMPK) pathway, thus rendering melanoma cells resistant to energy stress conditions. We evaluated whether pharmacological reactivation of the AMPK function could exert antitumor effects on melanoma cells bearing this pathway constitutively active because of a mutation in NRAS or BRAF genes. Nine melanoma cell lines were treated with the AMPK activators 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR) and phenformin.

View Article and Find Full Text PDF

Objectives: The major limitation to successful chemotherapy of neuroblastoma (NB) is the toxicity and the poor bioavailability of traditional drugs.

Methods: We synthesised an amphiphilic dextrin derivative (DX-OL) able to host fenretinide (4-HPR) by complexation. In this study, we have investigated the effects of 4-HPR-loaded amphipilic dextrin (DX-OL/4-HPR) in comparison with 4-HPR alone both in vitro on human NB cells and in vivo in pseudometastatic NB models.

View Article and Find Full Text PDF

Papillary thyroid carcinoma (PTC) arises from the thyroid follicular epithelium and represents the most frequent thyroid malignancy. PTC is associated with gene rearrangements generating RET/PTC and TRK oncogenes, and to the BRAFV600E activating point mutation. A role of tumor-suppressor genes in the pathogenesis of PTC has not been assessed yet.

View Article and Find Full Text PDF

Background: The retinoid 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) is a polar metabolite of fenretinide (4-HPR) very effective in killing cancer cells of different histotypes, able to inhibit 4-HPR-resistant cell growth and to act synergistically in combination with the parent drug. Unlike 4-HPR and other retinoids, 4-oxo-4-HPR inhibits tubulin polymerization, leading to multipolar spindle formation and mitotic arrest. Here we investigated whether 4-oxo-4-HPR, like 4-HPR, triggered cell death also via reactive oxygen species (ROS) generation and whether its antimicrotubule activity was related to a ROS-dependent mechanism in ovarian (A2780), breast (T47D), cervical (HeLa) and neuroblastoma (SK-N-BE) cancer cell lines.

View Article and Find Full Text PDF