Rapeseed meal (RSM) is a cheap, abundant and renewable feedstock, whose biorefinery is a current challenge for the sustainability of the oilseed sector. RSM is rich in sinapic acid (SA), a -hydroxycinnamic acid that can be decarboxylated into canolol (2,6-dimethoxy-4-vinylphenol), a valuable bioactive compound. Microbial phenolic acid decarboxylases (PADs), mainly described for the non-oxidative decarboxylation of ferulic and -coumaric acids, remain very poorly documented to date, for SA decarboxylation.
View Article and Find Full Text PDFAn optimized proteolysis process was applied to rapeseed meal proteins (RP) and the hydrolysate was separated by membrane filtration allowing the production of highly metal-chelating peptides in the permeate. In order to identify the chemical structure of the most active obtained metal-chelating peptides, immobilized metal affinity chromatography (IMAC) was applied. The RP-IMAC peptide fraction was mainly composed of small peptides from 2 to 20 amino acids.
View Article and Find Full Text PDFPreventing lipid oxidation, especially with the polyunsaturated fat-based products, is a major concern in sectors as agri-food and cosmetic. Even though the efficiency of synthetic antioxidants has been recognized, both consumers and manufacturers are looking for more innovative, healthy and quality products while rejecting synthetic additives due to their concern about safety, along with their environmental impact issues. In this context, plant biomass, which have shown to be rich in compounds, have raised interest for the isolation of novel naturally occurring antioxidants.
View Article and Find Full Text PDFBeside oil, oilseed rape () seeds contains nutritional bioactives such as polyphenols and glucosinolates. However, to date their nutritional properties have been overlooked in the new "double zero" breeds. Seed alcoholic extracts from two cultivars most contrasting in their phytochemical contents as measured by mass-spectrometry were given to -mice.
View Article and Find Full Text PDFNovel hydroxyalkyl esters and bis-aryl esters were synthesized from sinapic and caffeic acids and aliphatic α,ω-diols of increasing chain lengths from 2 to 12 carbon atoms. Then, their antiradical reactivity (DPPH assay) and their antioxidant activity in a model oil-in-water emulsion (CAT assay) were evaluated. All the esters showed lower antiradical activities compared to their corresponding phenolic acid.
View Article and Find Full Text PDF