Turbulence in stratified and rotating turbulent flows is characterized by an interplay between waves and eddies, resulting in continuous exchanges between potential and kinetic energy. Here, we study how these processes affect the turbulent energy cascade from large to small scales, which manifests itself by an irreversible evolution of the relative kinetic energy between two tracer particles. We find that when r_{0}, the separation between particles, is below a characteristic length ℓ_{t}, potential energy is on average transferred to kinetic energy, reducing time irreversibility, and conversely when r_{0}>ℓ_{t}.
View Article and Find Full Text PDFHow turbulent convective fluctuations organize to form larger-scale structures in planetary atmospheres remains a question that eludes quantitative answers. The assumption that this process is the result of an inverse cascade was suggested half a century ago in two-dimensional fluids, but its applicability to atmospheric and oceanic flows remains heavily debated, hampering our understanding of the energy balance in planetary systems. We show using direct numerical simulations with spatial resolutions of 12288 × 384 points that rotating and stratified flows can support a bidirectional cascade of energy, in three dimensions, with a ratio of Rossby to Froude numbers comparable to that of Earth's atmosphere.
View Article and Find Full Text PDFThe ocean's turbulent energy cycle has a paradox; large-scale eddies under the control of Earth's rotation transfer kinetic energy (KE) to larger scales via an inverse cascade, while a transfer to smaller scales is needed for dissipation. It has been hypothesized, using simulations, that fronts, waves, and other turbulent structures can produce a forward cascade of KE toward dissipation scales. However, this forward cascade and its coexistence with the inverse cascade have never been observed.
View Article and Find Full Text PDF