Terahertz (THz) generation via photomixing on photoconductive antenna using twin delayed chirped pulses provides a long THz pulse with a narrow bandwidth. To generate a long pulse with a broad bandwidth, we propose a new, to the best of our knowledge, method that combines two long optical pulses with opposite chirps. The pulses exhibit temporal distributions of their instantaneous frequencies with opposite slopes.
View Article and Find Full Text PDFIn this paper, we present the potential of Terahertz Time-Domain Imaging (THz-TDI) as a tool to perform non-invasive 3D analysis of an ancient enamel plate manufactured by Longwy Company in France. The THz data collected in the reflection mode were processed using noise filtering procedures and an advanced imaging approach. The results validate the capability to identify glaze layers and the thickness of ceramic materials.
View Article and Find Full Text PDFFour-wave mixing is investigated when chirped pump and signal pulses are injected in a photonic crystal fiber. The shot-to-shot stability of the amplified coherent signal was measured by using the dispersive Fourier transform method and compared with numerical simulations. We highlight that the signal-to-noise ratio (SNR) of the pulsed signal increases with the injected power and show that it is not deteriorated through the amplification when the fiber optical parametric amplifier is strongly saturated.
View Article and Find Full Text PDFThis paper presents the development, performance, integration, and implementation of a 150 GHz FMCW radar based on a homodyne harmonic mixing scheme for noncontact, nondestructive testing. This system offers high-dynamic-range measurement capabilities up to 100 dB and measurement rates up to 7.62 kHz.
View Article and Find Full Text PDFDevelopments toward the implementation of a terahertz pulse imaging system within a guided reflectometry configuration are reported. Two photoconductive antennas patterned on the same LT-GaAs active layer in association with a silica pipe hollow-core waveguide allowed us to obtain a guided optics-free imager. Besides working in a pulsed regime, the setup does not require additional optics to focus and couple the terahertz pulses into the waveguide core, simplifying the global implementation in comparison with other reported guided terahertz reflectometry systems.
View Article and Find Full Text PDF