Publications by authors named "F Farges"

TRIM7 is a ubiquitin E3 ligase with key regulatory functions, mediating viral infection, tumor biology, innate immunity, and cellular processes, such as autophagy and ferroptosis. It contains a PRYSPRY domain that specifically recognizes degron sequences containing C-terminal glutamine. Ligands that bind to the TRIM7 PRYSPRY domain may have applications in the treatment of viral infections, as modulators of inflammation, and in the design of a new class of PROTACs (PROteolysis TArgeting Chimeras) that mediate the selective degradation of therapeutically relevant proteins (POIs).

View Article and Find Full Text PDF
Pyrite contact twins.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2023

Two examples of contact twins in pyrite from Peru are described. The first one, from Pasto Bueno ore deposit, shows the pyritohedron {120} as principal form, accompanied by the {111} octahedron and {100} cube as secondary forms, giving a lenticular aspect. (111) is the composition plane, and the twin operation is any one of the three binary axes ⟨110⟩ within this plane.

View Article and Find Full Text PDF

E3 ligases constitute a large and diverse family of proteins that play a central role in regulating protein homeostasis by recruiting substrate proteins recruitment domains to the proteasomal degradation machinery. Small molecules can either inhibit, modulate or hijack E3 function. The latter class of small molecules led to the development of selective protein degraders, such as PROTACs (PROteolysis TArgeting Chimeras), that recruit protein targets to the ubiquitin system leading to a new class of pharmacologically active drugs and to new therapeutic options.

View Article and Find Full Text PDF

Selenite containing wastewaters can be treated in activated sludge systems, where the total selenium is removed from the wastewater by the formation of elemental selenium nanoparticles, which are trapped in the biomass. No studies have been carried out so far on the characterization of selenium fed activated sludge flocs, which is important for the development of this novel selenium removal process. This study showed that more than 94% of the trapped selenium in activated sludge flocs is in the form of elemental selenium, both as amorphous/monoclinic selenium nanospheres and trigonal selenium nanorods.

View Article and Find Full Text PDF

The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined.

View Article and Find Full Text PDF