Background And Objective: The brain-computer interface (BCI) technology acquires human brain electrical signals, which can be effectively and successfully used to control external devices, potentially supporting subjects suffering from motor impairments in the interaction with the environment. To this aim, BCI systems must correctly decode and interpret neurophysiological signals reflecting the intention of the subjects to move. Therefore, the accurate classification of single events in motor tasks represents a fundamental challenge in ensuring efficient communication and control between users and BCIs.
View Article and Find Full Text PDFHuman-in-the-loop approaches can greatly enhance the human-robot interaction by making the user an active part of the control loop, who can provide a feedback to the robot in order to augment its capabilities. Such feedback becomes even more important in all those situations where safety is of utmost concern, such as in assistive robotics. This study aims to realize a human-in-the-loop approach, where the human can provide a feedback to a specific robot, namely, a smart wheelchair, to augment its artificial sensory set, extending and improving its capabilities to detect and avoid obstacles.
View Article and Find Full Text PDFIn this study, the neuromuscular control modeling of the perturbed human upright stance is assessed through piecewise affine autoregressive with exogenous input (PWARX) models. Ten healthy subjects underwent an experimental protocol where visual deprivation and cognitive load are applied to evaluate whether PWARX can be used for modeling the role of the central nervous system (CNS) in balance maintenance in different conditions. Balance maintenance is modeled as a single-link inverted pendulum; and kinematic, dynamic, and electromyography (EMG) data are used to fit the PWARX models of the CNS activity.
View Article and Find Full Text PDFThe ability to control external devices through thought is increasingly becoming a reality. Human beings can use the electrical signals of their brain to interact or change the surrounding environment and more. The development of this technology called brain-computer interface (BCI) will increasingly allow people with motor disabilities to communicate or use assistive devices to walk, manipulate objects and communicate.
View Article and Find Full Text PDF