Olfactory bulb ensheathing glia (OB-OEG) promote repair of spinal cord injury (SCI) in rats after transplantation at acute or subacute (up to 45 days) stages. The most relevant clinical scenario in humans, however, is chronic SCI, in which no more major cellular or molecular changes occur at the injury site; this occurs after the third month in rodents. Whether adult OB-OEG grafts promote repair of severe chronic SCI has not been previously addressed.
View Article and Find Full Text PDFRepair of spinal cord injuries (SCIs) is still a major clinical challenge. Several attempts have been made to find a cure for this condition in experimental animals that could be extrapolated to humans. A key for success seems the availability of optimum animal models for testing different therapies.
View Article and Find Full Text PDFA therapy to treat injuries to the central nervous system (CNS) is, to date, a major clinical challenge. The devastating functional consequences they cause in human patients have encouraged many scientists to search, in animal models, for a repair strategy that could, in the future, be applied to humans. However, although several experimental approaches have obtained some degree of success, very few have been translated into clinical trials.
View Article and Find Full Text PDFRestor Neurol Neurosci
August 2002
The absence of spontaneous axonal regeneration in the adult mammalian central nervous system cause devastating functional consequences in patients with spinal cord injuries. During the past decades several attempts have been made in order to find a strategy to repair injured spinal cords in experimental animals, that could provide a novel therapeutic approach in humans. Cell transplantation has been broadly used as an intervention to influence neuronal survival and axonal regeneration in the severed neuraxis.
View Article and Find Full Text PDFAxonal regeneration in the lesioned mammalian central nervous system is abortive, and this causes permanent disabilities in individuals with spinal cord injuries. In adult rats, olfactory ensheathing glia (OEG) transplants successfully led to functional and structural recovery after complete spinal cord transection. From 3 to 7 months post surgery, all OEG-transplanted animals recovered locomotor functions and sensorimotor reflexes.
View Article and Find Full Text PDF