Phys Rev E Stat Nonlin Soft Matter Phys
August 2014
The seemingly regular and continuous motion of fluid displacement fronts in porous media at the macroscopic scale is propelled by numerous (largely invisible) pore-scale abrupt interfacial jumps and pressure bursts. Fluid fronts in porous media are characterized by sharp phase discontinuities and by rapid pore-scale dynamics that underlie their motion; both attributes challenge standard continuum theories of these flow processes. Moreover, details of pore-scale dynamics affect front morphology and subsequent phase entrapment behind a front and thereby shape key macroscopic transport properties of the unsaturated zone.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2012
The macroscopically regular motion of fluid displacement fronts in porous media often results from numerous pore scale interfacial jumps and associated pressure fluctuations. Such rapid pore scale dynamics defy postulated slow viscous energy dissipation and may shape phase entrapment and subsequent macroscopic transport properties. Certain displacement characteristics are predictable from percolation theory; however, insights into rapid interfacial dynamics require mechanistic models for hydraulically interacting pores such as found along fluid displacement fronts.
View Article and Find Full Text PDFERG2, emopamil binding protein (EBP), and sigma-1 receptor (sigma(1)) are enzymes of sterol metabolism and an enzyme-related protein, respectively, that share high affinity for various structurally diverse compounds. To discover novel high-affinity ligands, pharmacophore models were built with Catalyst based upon a series of 23 structurally diverse chemicals exhibiting K(i) values from 10 pM to 100 microM for all three proteins. In virtual screening experiments, we retrieved drugs that were previously reported to bind to one or several of these proteins and also tested 11 new hits experimentally, of which three, among them raloxifene, had affinities for sigma(1) or EBP of <60 nM.
View Article and Find Full Text PDFEBP (emopamil-binding protein) is a high-affinity binding protein for [3H]emopamil and belongs to the family of so-called sigma receptors. Mutations that disrupt EBP's 3beta-hydroxysteroid sterol delta8-delta7 isomerase activity (EC 5.3.
View Article and Find Full Text PDFIn this study, we used subtractive suppression hybridization to compare gene expression between an ALK-positive anaplastic large cell lymphoma (ALCL)-derived cell line and a clinical case of ALK-negative ALCL. Construction and screening of a subtracted library resulted in the cloning of 29 cDNAs which were differentially expressed. Most of these clones corresponded to novel genes with unknown function (EST) or to genes implicated in the differentiation, activation or signalling of T cells such as Ran/TC4, interleukin 1-receptor, thymosin beta4, thymosin beta10, moesin and cytohesin-1.
View Article and Find Full Text PDF