Publications by authors named "F Eynaud"

Species assemblage composition of marine microfossils offers the possibility to investigate ecological and climatological change on time scales inaccessible using conventional observations. Planktonic foraminifera - calcareous zooplankton - have an excellent fossil record and are used extensively in palaeoecology and palaeoceanography. During the Last Glacial Maximum (LGM; 19,000 - 23,000 years ago), the climate was in a radically different state.

View Article and Find Full Text PDF

Producing independent and accurate chronologies for marine sediments is a prerequisite to understand the sequence of millennial-scale events and reveal potential temporal offsets between marine and continental records, or between different marine records, possibly from different regions. The last 40 ky is a generally well-constrained period since radiocarbon (C) can be used as an absolute dating tool. However, in the northern North Atlantic, calendar ages cannot be directly derived from C ages, due to temporal and spatial variations of surface reservoir ages.

View Article and Find Full Text PDF

Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores.

View Article and Find Full Text PDF

The past two million years of eastern African climate variability is currently poorly constrained, despite interest in understanding its assumed role in early human evolution. Rare palaeoclimate records from northeastern Africa suggest progressively drier conditions or a stable hydroclimate. By contrast, records from Lake Malawi in tropical southeastern Africa reveal a trend of a progressively wetter climate over the past 1.

View Article and Find Full Text PDF

Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe.

View Article and Find Full Text PDF