Publications by authors named "F Eusebi"

The chemokine CX3CL1 and its receptor CX3CR1 are constitutively expressed in the nervous system. In this study, we used in vivo murine models of permanent middle cerebral artery occlusion (pMCAO) to investigate the protective potential of CX3CL1. We report that exogenous CX3CL1 reduced ischemia-induced cerebral infarct size, neurological deficits, and caspase-3 activation.

View Article and Find Full Text PDF

Cell membranes isolated from nervous tissue can be easily injected into Xenopus oocytes, thereby effectively "microtransplanting" functional neurotransmitter receptors. This technique therefore allows a direct functional characterization of the original membrane receptor/ion channel proteins and the associated molecules while still embedded in their natural lipid environment. Cell membranes will contain components from different types of cells, i.

View Article and Find Full Text PDF

We characterized the role of adenosine receptor (AR) subtypes in the modulation of glutamatergic neurotransmission by the chemokine fractalkine (CX3CL1) in mouse hippocampal CA1 neurons. CX(3)CL1 causes a reversible depression of excitatory postsynaptic current (EPSC), which is abolished by the A(3)R antagonist MRS1523, but not by A(1)R (DPCPX) or A(2A)R (SCH58261) antagonists. Consistently, CX3CL1-induced EPSC depression is absent in slices from A(3)R(-/-) but not A(1)R(-/-) or A(2A)R(-/-) mice.

View Article and Find Full Text PDF

Verapamil, a Ca(2+) channel blocker widely used in clinical practice, also affects the properties of frog and mouse muscle acetylcholine receptor (AChR). Here, we examine the mechanism of action of verapamil on human wild-type and slow-channel mutant muscle AChRs harboring in any subunit a valine-to-alanine mutation of 13' residue of the pore-lining M2 transmembrane segment. Verapamil, after a pre-treatment of 0.

View Article and Find Full Text PDF

Objective: Previous evidence in epileptic subjects has shown that theta (about 4-7Hz) and gamma rhythms (about 40-45Hz) of hippocampus, amygdala, and neocortex were temporally synchronized during the listening of repeated words successfully remembered (Babiloni et al., 2009). Here we re-analyzed those electroencephalographic (EEG) data to test whether a parallel increase in amplitude of late positive event-related potentials takes place.

View Article and Find Full Text PDF