Publications by authors named "F Erfurth"

Hyperspectral imaging (HSI) is a technique based on the combination of classical spectroscopy and conventional digital image processing. It is also well suited for the biological assays and quantitative real-time analysis since it provides spectral and spatial data of samples. The method grants detailed information about a sample by recording the entire spectrum in each pixel of the whole image.

View Article and Find Full Text PDF

Background: Psoriatic lesions are characterized by induration, scaling and erythema. Erythema is a result of inflammation and increased microvascular blood flow. Anthralin is the strongest topical antipsoriatic drug that causes clearing of psoriatic lesions and temporary remission.

View Article and Find Full Text PDF

Chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene produce chimeric proteins that cause abnormal expression of a subset of HOX genes and leukemia development. Here, we show that MLL normally regulates expression of mir-196b, a hematopoietic microRNA located within the HoxA cluster, in a pattern similar to that of the surrounding 5' Hox genes, Hoxa9 and Hoxa10, during embryonic stem (ES) cell differentiation. Within the hematopoietic lineage, mir-196b is most abundant in short-term hematopoietic stem cells and is down-regulated in more differentiated hematopoietic cells.

View Article and Find Full Text PDF

Being able to rapidly and sensitively detect specific enzymatic products is important when screening biological samples for enzymatic activity. We present a simple method for assaying protease activity in the presence of protease inhibitors (PIs) by measuring tryptic peptide accumulation on copolymer pMALDI target chips using a dual fluorescence/MALDI-TOF-MS read-out. The small platform of the chip accommodates microliter amounts of sample and allows for rapid protein digestion.

View Article and Find Full Text PDF

We describe the development and operation of a two-laser, large-field hyperspectral scanner for analysis of multicolor genotyping microarrays. In contrast to confocal microarray scanners, in which wavelength selectivity is obtained by positioning band-pass filters in front of a photomultiplier detector, hyperspectral microarray scanners collect the complete visible emission spectrum from the labeled microarrays. Hyperspectral scanning permits discrimination of multiple spectrally overlapping fluorescent labels with minimal use of optical filters, thus offering important advantages over standard filter-based multicolor microarray scanners.

View Article and Find Full Text PDF