Publications by authors named "F Ebetino"

Biomaterials are widely used as orthopaedic implants and bone graft substitutes. We aimed to develop a rapid osteogenic assessment method using a murine tibial periosteal ossification model to evaluate the bone formation/remodelling potential of a biomaterial within 2-4 weeks. A novel hydroxyapatite/aragonite (HAA) biomaterial was implanted into C57BL/6 mice juxtaskeletally between the tibia and tibialis anterior muscle.

View Article and Find Full Text PDF

Osteoporosis remains incurable. The most widely used antiresorptive agents, bisphosphonates (BPs), also inhibit bone formation, while the anabolic agent, teriparatide, does not inhibit bone resorption, and thus they have limited efficacy in preventing osteoporotic fractures and cause some side effects. Thus, there is an unmet need to develop dual antiresorptive and anabolic agents to prevent and treat osteoporosis.

View Article and Find Full Text PDF

Osteoporosis is incurable because there are no dual antiresorptive and anabolic therapeutic agents that can be administered long-term. The most widely used antiresorptive agents, bisphosphonates (BPs), also inhibit bone formation and thus have limited effect in preventing osteoporotic fracture. Hydroxychloroquine (HCQ), which is used to treat rheumatoid arthritis, prevents the lysosomal degradation of TNF receptor-associated factor 3 (TRAF3), an NF-κB adaptor protein that limits bone resorption and maintains bone formation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated new drug delivery methods for treating MRSA osteomyelitis by creating bisphosphonate-conjugated sitafloxacin (BCS) and hydroxybisphosphonate-conjugated sitafloxacin (HBCS) that target and release medication near bone infections.
  • In a mouse model, treatments containing BCS or HBCS combined with vancomycin were found to significantly reduce persistent infections and bone damage, unlike other treatments that caused severe fractures.
  • Results suggest that HBCS, in conjunction with standard treatments, effectively eradicates MRSA osteomyelitis and helps control biofilm-related infections.
View Article and Find Full Text PDF

Eradication of MRSA osteomyelitis requires elimination of distinct biofilms. To overcome this, we developed bisphosphonate-conjugated sitafloxacin (BCS, BV600072) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS, BV63072), which achieve "target-and-release" drug delivery proximal to the bone infection and have prophylactic efficacy against MRSA static biofilm in vitro and in vivo. Here we evaluated their therapeutic efficacy in a murine 1-stage exchange femoral plate model with bioluminescent MRSA (USA300LAC::lux).

View Article and Find Full Text PDF