Publications by authors named "F Draicchio"

Understanding the psychophysiological state during robot-aided rehabilitation is crucial for assessing the patient experience during treatments. This paper introduces a psychophysiological estimation approach using a Fuzzy Logic inference model to assess patients' perception of robots during upper-limb robot-aided rehabilitation sessions. The patients were asked to perform nine cycles of 3D point-to-point trajectories toward different targets at varying heights with the assistance of an anthropomorphic robotic arm (i.

View Article and Find Full Text PDF

The central nervous system (CNS) controls movements and regulates joint stiffness with muscle co-activation, but until now, few studies have examined muscle pairs during running. This study aims to investigate differences in lower limb muscle coactivation during gait at different speeds, from walking to running. Nineteen healthy runners walked and ran at speeds ranging from 0.

View Article and Find Full Text PDF

We present an avatar system designed to facilitate the embodiment of humanoid robots by human operators, validated through iCub3, a humanoid developed at the Istituto Italiano di Tecnologia. More precisely, the paper makes two contributions: First, we present the humanoid iCub3 as a robotic avatar that integrates the latest significant improvements after about 15 years of development of the iCub series. Second, we present a versatile avatar system enabling humans to embody humanoid robots encompassing aspects such as locomotion, manipulation, voice, and facial expressions with comprehensive sensory feedback including visual, auditory, haptic, weight, and touch modalities.

View Article and Find Full Text PDF

Low back pain (LBP) is a leading cause of disability in the workplace, often caused by manually lifting of heavy loads. Instrumental-based assessment tools are used to quantitatively assess the biomechanical risk of lifting activities. This study aims to verify that, during the execution of fatiguing frequency-dependent lifting, high-density surface electromyography (HDsEMG) allows the discrimination of healthy controls (HC) versus people with LBP and biomechanical risk levels.

View Article and Find Full Text PDF