Purpose: In this study we compared the recently developed TSPO tracer [F]F-DPA, with [F]DPA-714 and [C]PBR28 by performing in vivo PET imaging on the same Alzheimer's disease mouse model APP/PS1-21 (TG) and wild-type (WT) mice with all three radiotracers.
Procedures: To compare the radiotracer uptake, percentage of injected dose/mL (%ID/mL), standardized uptake value ratios to cerebellum (SUVR), and voxel-wise analyses were performed.
Results: The peak uptake of [F]F-DPA was higher than 4.
An extensive survey of groundwater quality was performed at the regional scale in peri-urban and industrial contexts of the Walloon Region (Belgium). To this end, 243 sampling locations from 8 areas located in different geological contexts and different peri-urban areas of the region were sampled outside pollution hotspots related to contaminated sites. Each groundwater sample was analyzed for 19 inorganic trace elements, 59 organic micro-pollutants and 8 major and minor elements.
View Article and Find Full Text PDFBackground: Tumor-associated microglia and macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are potent immunosuppressors in the glioma tumor microenvironment (TME). Their infiltration is associated with tumor grade, progression, and therapy resistance. Specific tools for image-guided analysis of spatiotemporal changes in the immunosuppressive myeloid tumor compartments are missing.
View Article and Find Full Text PDF[F]F-DPA, a novel translocator protein 18 kDa (TSPO)-specific radioligand for imaging neuroinflammation, has to date been synthesized with low to moderate molar activities (A's). In certain cases, low A can skew the estimation of specific binding. The high proportion of the non-radioactive component can reduce the apparent-specific binding by competitively binding to receptors.
View Article and Find Full Text PDFMicroglia are potential targets for therapeutic intervention in neurological and neurodegenerative diseases affecting the central nervous system. In order to assess the efficacy of therapies aimed to reduce the tissue damaging activities of microglia and/or to promote the protective potential of these cells, suitable pre-clinical and clinical tools for the analysis of microglia activities and dynamics are required. The aim of this work was to identify new translational markers of the anti-inflammatory / protective state of microglia for the development of novel PET tracers.
View Article and Find Full Text PDF