Publications by authors named "F Di Ninno"

The prediction of neointimal hyperplasia (NIH) growth, leading to vein graft failure in lower-limb peripheral arterial disease (PAD), is hindered by the multifactorial and multiscale mechanobiological mechanisms underlying the vascular remodelling process. Multiscale in silico models, linking patients' hemodynamics to NIH pathobiological mechanisms, can serve as a clinical support tool to monitor disease progression. Here, we propose a new computational pipeline for simulating NIH growth, carefully balancing model complexity/inclusion of mechanisms and readily available clinical data, and we use it to predict NIH growth for an entire vein graft.

View Article and Find Full Text PDF

The Basic Vascular Science (BVS) meeting was set up to provide a forum for researchers and clinicians in the field to exchange knowledge and ideas and to foster cross-disciplinary collaborations. The BVS 2024 meeting was held in Berlin. Attended by vascular surgeons and physicians, interventional radiologists, basic science researchers, and engineers, the meeting continues to successfully attract both early career researchers and established clinician-scientists.

View Article and Find Full Text PDF

Background And Objectives: The integration of hemodynamic markers as risk factors in restenosis prediction models for lower-limb peripheral arteries is hindered by fragmented clinical datasets. Computed tomography (CT) scans enable vessel geometry reconstruction and can be obtained at different times than the Doppler ultrasound (DUS) images, which provide information on blood flow velocity. Computational fluid dynamics (CFD) simulations allow the computation of near-wall hemodynamic indices, whose accuracy depends on the prescribed inlet boundary condition (BC), derived from the DUS images.

View Article and Find Full Text PDF

Objective: Restenosis is a significant complication of revascularization treatments in coronary and peripheral arteries, sometimes necessitating repeated intervention. Establishing when restenosis will happen is extremely difficult due to the interplay of multiple variables and factors. Standard clinical and Doppler ultrasound scans surveillance follow-ups are the only tools clinicians can rely on to monitor intervention outcomes.

View Article and Find Full Text PDF

In-stent restenosis (ISR) represents a major drawback of stented superficial femoral arteries (SFAs). Motivated by the high incidence and limited knowledge of ISR onset and development in human SFAs, this study aims to (i) analyze the lumen remodeling trajectory over 1-year follow-up period in human stented SFAs and (ii) investigate the impact of altered hemodynamics on ISR initiation and progression. Ten SFA lesions were reconstructed at four follow-ups from computed tomography to quantify the lumen area change occurring within 1-year post-intervention.

View Article and Find Full Text PDF