Publications by authors named "F Desiere"

Background: A survey of IFCC members was conducted to determine current and future perspectives on digital innovations within laboratory medicine and healthcare sectors.

Methods: Questions focused on the relevance of digital diagnostic solutions, implementation and barriers to adopting digital technologies, and supplier roles in supporting innovation. Digital diagnostic market segments were defined by solution recipient (laboratory, clinician, patient/consumer, payor) and proximity to core laboratory operations.

View Article and Find Full Text PDF

This special issue of New Biotechnology is focused on molecular diagnostics and personalised medicine and appears at an epochal moment in the development of the field. The practice of medicine is taking a significant and irrevocable turn towards personalisation, due to the great progress in areas such as genomics, pharmacogenomics and molecular diagnosis. It becomes increasingly apparent that to deliver the promise of personalised treatments, more and more novel medicines discovered today will be presented together with innovative companion diagnostics.

View Article and Find Full Text PDF

We present the Saccharomyces cerevisiae PeptideAtlas composed from 47 diverse experiments and 4.9 million tandem mass spectra. The observed peptides align to 61% of Saccharomyces Genome Database (SGD) open reading frames (ORFs), 49% of the uncharacterized SGD ORFs, 54% of S.

View Article and Find Full Text PDF

The completion of the sequencing of the human genome and the concurrent, rapid development of high-throughput proteomic methods have resulted in an increasing need for automated approaches to archive proteomic data in a repository that enables the exchange of data among researchers and also accurate integration with genomic data. PeptideAtlas (http://www.peptideatlas.

View Article and Find Full Text PDF

A crucial aim upon the completion of the human genome is the verification and functional annotation of all predicted genes and their protein products. Here we describe the mapping of peptides derived from accurate interpretations of protein tandem mass spectrometry (MS) data to eukaryotic genomes and the generation of an expandable resource for integration of data from many diverse proteomics experiments. Furthermore, we demonstrate that peptide identifications obtained from high-throughput proteomics can be integrated on a large scale with the human genome.

View Article and Find Full Text PDF