The MHC class II (MHCII) processing pathway presents peptides derived from exogenous or membrane-bound proteins to CD4+ T cells. Several studies have shown that glycopeptides are necessary to modulate CD4+ T cell recognition, though glycopeptide structures in these cases are generally unknown. Here, we present a total of 93 glycopeptides from three melanoma cell lines and one matched EBV-transformed line with most found only in the melanoma cell lines.
View Article and Find Full Text PDFEndocan expression is increasingly studied in various human cancers. Experimental evidence showed that human endocan, through its glycan chain, is implicated in various processes of tumor growth. We functionally characterize mouse endocan which is also a chondroitin sulfate proteoglycan but much less glycanated than human endocan.
View Article and Find Full Text PDFInsights gained from characterizing MHC-peptide-TCR interactions have held the promise that directed structural modifications can have predictable functional consequences. The ability to manipulate T cell reactivity synthetically or through genetic engineering might thus be translated into new therapies for common diseases such as cancer and autoimmune disorders. In the current study, we determined the crystal structure of HLA-DR4 in complex with the nonmutated dominant gp100 epitope gp10044-59, associated with many melanomas.
View Article and Find Full Text PDFHuman vascular endocan is a proteoglycan exhibiting tumorigenic activity through both its glycan and protein cores. Endocan mRNA is identified as being one of the most significant molecular signatures defining a poor prognosis in lung, breast, kidney, prostate, and thyroid malignancies. The survival inversely correlates with endocan expression in tumor tissue from hepatocarcinoma, and in serum from lung cancer.
View Article and Find Full Text PDFDysregulated protein phosphorylation is a hallmark of malignant transformation. Transformation can generate major histocompatibility complex (MHC)-bound phosphopeptides that are differentially displayed on tumor cells for specific recognition by T cells. To understand how phosphorylation alters the antigenic identity of self-peptides and how MHC class II molecules present phosphopeptides for CD4(+) T-cell recognition, we determined the crystal structure of a phosphopeptide derived from melanoma antigen recognized by T cells-1 (pMART-1), selectively expressed by human melanomas, in complex with HLA-DR1.
View Article and Find Full Text PDF