Numerous prediction equations have been developed based on mid-infrared (MIR) spectra and some could be potentially used as biomarkers of heat stress. However, practical experience shows that confusion between the effect of heat stress and other effects like lactation stage or feeding variation over the year can easily occur. On this basis, the objective of this study was to identify potential milk components predicted by MIR as biomarkers of heat stress based on a 2-step approach allowing to correct for those effects.
View Article and Find Full Text PDFThe advantage of employing mid-infrared spectrometry for milk analysis in breeding lies in its ability to quickly generate millions of records. However, these records may be biased if the calibration process does not account for their spectral variability when constructing the predictive model. Therefore, this study introduces a novel method for developing a world representative spectral database (WRSD) to reduce the risks of spectral extrapolation when predicting dairy traits in new samples.
View Article and Find Full Text PDFAt the individual cow level, suboptimum fertility, mastitis, negative energy balance, and ketosis are major issues in dairy farming. These problems are widespread on dairy farms and have an important economic impact. The objectives of this study were (1) to assess the potential of milk mid-infrared (MIR) spectra to predict key biomarkers of energy deficit (citrate, isocitrate, glucose-6 phosphate [glucose-6P], free glucose), ketosis (β-hydroxybutyrate [BHB] and acetone), mastitis (N-acetyl-β-d-glucosaminidase activity [NAGase] and lactate dehydrogenase), and fertility (progesterone); (2) to test alternative methodologies to partial least squares (PLS) regression to better account for the specific asymmetric distribution of the biomarkers; and (3) to create robust models by merging large datasets from 5 international or national projects.
View Article and Find Full Text PDFThe use of milk Fourier transform mid-infrared (FT-MIR) spectrometry to develop management and breeding tools for dairy farmers and industry is growing and supported by the availability of numerous new predicted phenotypes to assess the nutritional quality of milk and its technological properties, but also the animal health and welfare status and its environmental fingerprint. For genetic evaluations, having a long-term and representative spectral dairy herd improvement (DHI) database improves the reliabilities of estimated breeding values (EBV) from these phenotypes. Unfortunately, most of the time, the raw spectral data used to generate these estimations are not stored.
View Article and Find Full Text PDFThis research aims to develop a predictive model to discriminate milk produced from a cattle diet either based on grass or not using milk mid-infrared spectrometry and the month of testing (an indirect indicator of the feeding ration). The dataset contained 3,377,715 spectra collected between 2011 and 2021 from 2449 farms and 3 grazing traits defined following the month of testing. Records from 30% of the randomly selected farms were kept in the calibration set, and the remaining records were used to validate the models.
View Article and Find Full Text PDF