Publications by authors named "F De Graeve"

Interactions between plants and herbivores promote evolutionary change. Studying the evolution of herbivore mechanisms aimed to cope with different host plant species is a critical intersection between evolutionary biology and sustainable pest management. Generalist herbivores are of particular interest, as hybridization between genetically distinct populations can increase the standing genetic variation and therefore the adaptive potential of the species.

View Article and Find Full Text PDF

Biomolecular condensates have recently retained much attention given that they provide a fundamental mechanism of cellular organization. Among those, cytoplasmic ribonucleoprotein (RNP) granules selectively and reversibly concentrate RNA molecules and regulatory proteins, thus contributing to the spatiotemporal regulation of associated RNAs. Extensive in vitro work has unraveled the molecular and chemical bases of RNP granule assembly.

View Article and Find Full Text PDF

Stress granules (SGs) are cytoplasmic ribonucleoprotein condensates that dynamically and reversibly assemble in response to stress. They are thought to contribute to the adaptive stress response by storing translationally inactive mRNAs as well as signaling molecules. Recent work has shown that SG composition and properties depend on both stress and cell types, and that neurons exhibit a complex SG proteome and a strong vulnerability to mutations in SG proteins.

View Article and Find Full Text PDF

Genome-wide association studies have identified 240 independent loci associated with type 2 diabetes (T2D) risk, but this knowledge has not advanced precision medicine. In contrast, the genetic diagnosis of monogenic forms of diabetes (including maturity-onset diabetes of the young (MODY)) are textbook cases of genomic medicine. Recent studies trying to bridge the gap between monogenic diabetes and T2D have been inconclusive.

View Article and Find Full Text PDF

Stress granules (SGs) are macromolecular assemblies induced by stress and composed of proteins and mRNAs stalled in translation initiation. SGs play an important role in the response to stress and in the modulation of signaling pathways. Furthermore, these structures are related to the pathological ribonucleoprotein (RNP) aggregates found in neurodegenerative disease contexts, highlighting the need to understand how they are formed and recycled in normal and pathological contexts.

View Article and Find Full Text PDF