We compared the clinical and analytical performance of Alzheimer's disease (AD) plasma biomarkers measured using the single-molecule array (Simoa) and Lumipulse platforms. We quantified the plasma levels of amyloid beta 42 (Aβ42), Aβ40, phosphorylated tau (Ptau181), and total tau biomarkers in 81 patients with mild cognitive impairment (MCI), 30 with AD, and 16 with non-AD dementia. We found a strong correlation between the Simoa and Lumipulse methods.
View Article and Find Full Text PDFIntroduction: Fatty acids (FAs) are the building blocks of complex lipids and signaling compounds; the role of the lipidome fatty acid profile (LFA) in AD progression remains unclear.
Methods: The LFA of plasma and cerebrospinal fluid (CSF) samples from 289 participants (103 AD patients, 92 MCI patients, and 94 controls) was determined by GC-FID. The MCI subjects were followed up for 58 ± 12.
Genetic, metabolic, and clinical evidence links lipid dysregulation to an increased risk of Alzheimer's disease (AD). However, the role of lipids in the pathophysiological processes of AD and its clinical progression is unclear. We investigated the association between cerebrospinal fluid (CSF) lipidome and the pathological hallmarks of AD, progression from mild cognitive impairment (MCI) to AD, and the rate of cognitive decline in MCI patients.
View Article and Find Full Text PDFBackground: Obstructive sleep apnoea (OSA) has a high prevalence in patients with Alzheimer's disease (AD). Both conditions have been shown to be associated with lipid dysregulation. However, the relationship between OSA severity and alterations in lipid metabolism in the brains of patients with AD has yet to be fully elucidated.
View Article and Find Full Text PDF