We describe the discovery and optimization of 5-substituted-N-pyridazinylbenzamide derivatives as potent and selective LRRK2 inhibitors. Extensive SAR studies led to the identification of compounds 18 and 23, which demonstrated good in vitro pharmacokinetic profile and excellent selectivity over 140 other kinases. Both compounds demonstrated high unbound fractions in both blood and brain.
View Article and Find Full Text PDFInhibition of LRRK2 kinase activity with small molecules has emerged as a potential novel therapeutic treatment for Parkinson's disease. Herein we disclose the discovery of a 4-ethoxy-7H-pyrrolo[2,3-d]pyrimidin-2-amine series as potent LRRK2 inhibitors identified through a kinase-focused set screening. Optimization of the physicochemical properties and kinase selectivity led to the discovery of compound 7, which exhibited potent in vitro inhibition of LRRK2 kinase activity, good physicochemical properties and kinase selectivity across the kinome.
View Article and Find Full Text PDFPrevious work on human NK(1) (hNK(1)) antagonists in which the core of the structure is a 5,5-fused pyrrolizinone has been disclosed. The structural-activity-relationship studies on simple alpha- and beta-substituted compounds of this series provided several potent and bioavailable hNK(1) antagonists that displayed excellent brain penetration as observed by their good efficacy in the gerbil foot-tapping (GFT) model assay. Several of these compounds exhibited 100% inhibition of the foot-tapping response at 0.
View Article and Find Full Text PDF3-tert-Butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)-pyrazolo[1,5-d][1,2,4]triazine (MRK-016) is a pyrazolotriazine with an affinity of between 0.8 and 1.5 nM for the benzodiazepine binding site of native rat brain and recombinant human alpha1-, alpha2-, alpha3-, and alpha5-containing GABA(A) receptors.
View Article and Find Full Text PDFNausea and vomiting are among the most common symptoms encountered in medicine as either symptoms of disease or side effects of treatments. Developing novel anti-emetics and identifying emetic liability in novel chemical entities rely on models that can recreate the complexity of these multi-system reflexes. Animal models (especially the ferret and dog) are the current gold standard; however, the selection of appropriate models is still a matter of debate, especially when studying the subjective human sensation of nausea.
View Article and Find Full Text PDF