Publications by authors named "F D Morrow"

New Yorkers face a multitude of health and safety risks that are exacerbated by a changing climate. These risks include direct impacts from extreme weather events and other climate hazards, as well as indirect impacts occurring through a chain of interactions. Physical safety, physical health, and mental health are all part of the equation-as are the many nonclimate factors that interact with climate change to influence health outcomes.

View Article and Find Full Text PDF

Objective: Critically ill patients are at high risk of developing pressure ulcers (PU), with the sacrum and heels being highly susceptible to pressure injuries. The objective of our study was to evaluate the clinical effectiveness of a new multi-layer, self-adhesive soft silicone foam heel dressing to prevent PU development in trauma and critically ill patients in the intensive care unit (ICU).

Method: A cohort of critically ill patients were enrolled at the Royal Melbourne Hospital.

View Article and Find Full Text PDF

Frontline anticancer therapies such as chemotherapy and irradiation often slow tumor growth, but tumor regrowth and spread to distant sites usually occurs after the conclusion of treatment. We recently showed that macrophages could be used to deliver large quantities of a hypoxia-regulated, prostate-specific oncolytic virus (OV) to prostate tumors. In the current study, we show that administration of such OV-armed macrophages 48 hours after chemotherapy (docetaxel) or tumor irradiation abolished the posttreatment regrowth of primary prostate tumors in mice and their spread to the lungs for up to 27 or 40 days, respectively.

View Article and Find Full Text PDF

New therapies are required to target hypoxic areas of tumors as these sites are highly resistant to conventional cancer therapies. Monocytes continuously extravasate from the bloodstream into tumors where they differentiate into macrophages and accumulate in hypoxic areas, thereby opening up the possibility of using these cells as vehicles to deliver gene therapy to these otherwise inaccessible sites. We describe a new cell-based method that selectively targets an oncolytic adenovirus to hypoxic areas of prostate tumors.

View Article and Find Full Text PDF

Attempts have been made to use various forms of cellular vectors to deliver therapeutic genes to diseased tissues like malignant tumours. However, this approach has proved problematic due to the poor uptake of these vectors by the target tissue. We have devised a novel way of using magnetic nanoparticles (MNPs) to enhance the uptake of such 'therapeutically armed' cells by tumours.

View Article and Find Full Text PDF