A radiative transfer model was parameterized and validated using Biogeochemical Argo float data acquired between 2012 and 2017 across the Mediterranean Sea. Fluorescence-derived chlorophyll concentration, particulate optical backscattering at 700 nm, and fluorescence of chromophoric dissolved organic matter (CDOM) were used to parametrize the light absorption and scattering coefficients of the optically significant water constituents (such as pure water, non-algal particles, CDOM, and phytoplankton). The model was validated with in situ downwelling irradiance profiles and apparent optical properties derived both from irradiance profiles and satellite data, such as the diffuse attenuation coefficients and remote sensing reflectance.
View Article and Find Full Text PDFMeasuring the underwater light field is a key mission of the international Biogeochemical-Argo program. Since 2012, 0-250 dbar profiles of downwelling irradiance at 380, 412 and 490 nm besides photosynthetically available radiation (PAR) have been acquired across the globe every 1 to 10 days. The resulting unprecedented amount of radiometric data has been previously quality-controlled for real-time distribution and ocean optics applications, yet some issues affecting the accuracy of measurements at depth have been identified such as changes in sensor dark responsiveness to ambient temperature, with time and according to the material used to build the instrument components.
View Article and Find Full Text PDFGlobal Biogeochem Cycles
April 2021
Stratified oceanic systems are characterized by the presence of a so-called Deep Chlorophyll a Maximum (DCM) not detectable by ocean color satellites. A DCM can either be a phytoplankton (carbon) biomass maximum (Deep Biomass Maximum, DBM), or the consequence of photoacclimation processes (Deep photoAcclimation Maximum, DAM) resulting in the increase of chlorophyll a per phytoplankton carbon. Even though these DCM (further qualified as either DBMs or DAMs) have long been studied, no global-scale assessment has yet been undertaken and large knowledge gaps still remain in relation to the environmental drivers responsible for their formation and maintenance.
View Article and Find Full Text PDFThe Mediterranean Sea is a hotspot for climate change, and recent studies have reported its intense warming and salinification. In this study, we use an outstanding dataset relying mostly on glider endurance lines but also on other platforms to track these trends in the northwestern Mediterranean where deep convection occurs. Thanks to a high spatial coverage and a high temporal resolution over the period 2007-2017, we observed the warming (+0.
View Article and Find Full Text PDFIt is widely believed that during winter and spring, Arctic marine phytoplankton cannot grow until sea ice and snow cover start melting and transmit sufficient irradiance, but there is little observational evidence for that paradigm. To explore the life of phytoplankton during and after the polar night, we used robotic ice-avoiding profiling floats to measure ocean optics and phytoplankton characteristics continuously through two annual cycles in Baffin Bay, an Arctic sea that is covered by ice for 7 months a year. We demonstrate that net phytoplankton growth occurred even under 100% ice cover as early as February and that it resulted at least partly from photosynthesis.
View Article and Find Full Text PDF