The alternative pathway (AP) of the complement system is a key contributor to the pathogenesis of several human diseases including age-related macular degeneration, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and various glomerular diseases. The serine protease factor B (FB) is a key node in the AP and is integral to the formation of C3 and C5 convertase. Despite the prominent role of FB in the AP, selective orally bioavailable inhibitors, beyond our own efforts, have not been reported previously.
View Article and Find Full Text PDFInhibition of neprilysin (NEP) is widely studied as a therapeutic target for the treatment of hypertension, heart failure, and kidney disease. Sacubitril/valsartan (LCZ696) is a drug approved to reduce the risk of cardiovascular death in heart failure patients with reduced ejection fraction. LBQ657 is the active metabolite of sacubitril and an inhibitor of NEP.
View Article and Find Full Text PDFComplement factor D (FD), a highly specific S1 serine protease, plays a central role in the amplification of the alternative complement pathway (AP) of the innate immune system. Dysregulation of AP activity predisposes individuals to diverse disorders such as age-related macular degeneration, atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis type II, and paroxysmal nocturnal hemoglobinuria. Previously, we have reported the screening efforts and identification of reversible benzylamine-based FD inhibitors (1 and 2) binding to the open active conformation of FD.
View Article and Find Full Text PDFDysregulation of the alternative complement pathway (AP) predisposes individuals to a number of diseases including paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, and C3 glomerulopathy. Moreover, glomerular Ig deposits can lead to complement-driven nephropathies. Here we describe the discovery of a highly potent, reversible, and selective small-molecule inhibitor of factor B, a serine protease that drives the central amplification loop of the AP.
View Article and Find Full Text PDFComplement Factor D, a serine protease of the S1 family and key component of the alternative pathway amplification loop, represents a promising target for the treatment of several prevalent and rare diseases linked to the innate immune system. Previously reported FD inhibitors have been shown to bind to the FD active site in its self-inhibited conformation characterized by the presence of a salt bridge at the bottom of the S1 pocket between Asp189 and Arg218. We report herein a new set of small-molecule FD ligands that harbor a basic S1 binding moiety directly binding to the carboxylate of Asp189, thereby displacing the Asp189-Arg218 ionic interaction and significantly changing the conformation of the self-inhibitory loop.
View Article and Find Full Text PDF