Publications by authors named "F Cropp"

The ability to resolve the dynamics of matter on its native temporal and spatial scales constitutes a key challenge and convergent theme across chemistry, biology, and materials science. The last couple of decades have witnessed ultrafast electron diffraction (UED) emerge as one of the forefront techniques with the sensitivity to resolve atomic motions. Increasingly sophisticated UED instruments are being developed that are aimed at increasing the beam brightness in order to observe structural signatures, but so far they have been limited to low average current beams.

View Article and Find Full Text PDF

We present a general adaptive latent space tuning approach for improving the robustness of machine learning tools with respect to time variation and distribution shift. We demonstrate our approach by developing an encoder-decoder convolutional neural network-based virtual 6D phase space diagnostic of charged particle beams in the HiRES ultrafast electron diffraction (UED) compact particle accelerator with uncertainty quantification. Our method utilizes model-independent adaptive feedback to tune a low-dimensional 2D latent space representation of ∼1 million dimensional objects which are the 15 unique 2D projections (x,y),.

View Article and Find Full Text PDF

Machine learning (ML) tools are able to learn relationships between the inputs and outputs of large complex systems directly from data. However, for time-varying systems, the predictive capabilities of ML tools degrade if the systems are no longer accurately represented by the data with which the ML models were trained. For complex systems, re-training is only possible if the changes are slow relative to the rate at which large numbers of new input-output training data can be non-invasively recorded.

View Article and Find Full Text PDF

In this Letter we report a demonstration of electron ghost imaging. A digital micromirror device directly modulates the photocathode drive laser to control the transverse distribution of a relativistic electron beam incident on a sample. Correlating the structured illumination pattern to the total sample transmission then retrieves the target image, avoiding the need for a pixelated detector.

View Article and Find Full Text PDF