Objective: To study the SARS-CoV-2 infection rate among hospital healthcare workers after the first wave of the COVID-19 pandemic, and provide more knowledge in the understanding of the relationship between infection, symptomatology and source of infection.
Design: A cross-sectional study in healthcare workers.
Setting: Northern Limburg, the Netherlands.
Recognized issues with poor hand hygiene compliance among healthcare workers and reports of recontamination of previously chemically disinfected surfaces through hand contact emphasize the need for novel hygiene methods in addition to those currently available. One such approach involves antimicrobial (nano) coatings (AMCs), whereby integrated active ingredients are responsible for elimination of micro-organisms that come into contact with treated surfaces. While widely studied under laboratory conditions with promising results, studies under real-life healthcare conditions are scarce.
View Article and Find Full Text PDFThe spread of infections in healthcare environments is a persistent and growing problem in most countries, aggravated by the development of microbial resistance to antibiotics and disinfectants. In addition to indwelling medical devices (e.g.
View Article and Find Full Text PDFWorldwide, millions of patients are affected annually by healthcare-associated infection (HCAI), impacting up to 80,000 patients in European Hospitals on any given day. This represents not only public health risk, but also an economic burden. Complementing routine hand hygiene practices, cleaning and disinfection, antimicrobial coatings hold promise based, in essence, on the application of materials and chemicals with persistent bactericidal or -static properties onto surfaces or in textiles used in healthcare environments.
View Article and Find Full Text PDFInfections and infectious diseases are considered a major challenge to human health in healthcare units worldwide. This opinion paper was initiated by EU COST Action network AMiCI (AntiMicrobial Coating Innovations) and focuses on scientific information essential for weighing the risks and benefits of antimicrobial surfaces in healthcare settings. Particular attention is drawn on nanomaterial-based antimicrobial surfaces in frequently-touched areas in healthcare settings and the potential of these nano-enabled coatings to induce (eco)toxicological hazard and antimicrobial resistance.
View Article and Find Full Text PDF