Urban Heat Island (UHI) is acknowledged to generate harmful consequences on human health, and it is one of the main anthropogenic challenges to face in modern cities. Due to the urban dynamic complexity, a full microclimate decoding is required to design tailored mitigation strategies for reducing heat-related vulnerability. This study proposes a new method to assess intra-urban microclimate variability by combining for the first time two dedicated monitoring systems consisting of fixed and mobile techniques.
View Article and Find Full Text PDFThis work is focused on the application of Life Cycle Assessment (LCA) methodology for the quantification of the potential environmental impacts associated with the obtainment of levulinic acid from residual L. biomass and its subsequent valorization in innovative bioplasticizers for tuning the properties as well as the processability of biopolymers. This potentially allows the production of fully biobased and biodegradable bioplastic formulations, thus addressing the issues related to the fossil origin and nonbiodegradability of conventional additives, such as phthalates.
View Article and Find Full Text PDFGlobal waste is expected to grow substantially by 2050, therefore, defining an effective waste management strategy is a crucial topic for both industry and academia. Nowadays, food and green waste, in particular, represent a large share of the total waste production. All this considered, effectively processing and eventually reusing materials such as waste cooking oil is of paramount importance.
View Article and Find Full Text PDFStranded driftwood feedstocks may represent, after pretreatment with steam explosion and enzymatic hydrolysis, a cheap C-source for producing biochemicals and biofuels using oleaginous yeasts. The hydrolysis was optimized using a response surface methodology (RSM). The solid loading (SL) and the dosage of enzyme cocktail (ED) were variated following a central composite design (CCD) aimed at optimizing the conversion of carbohydrates into lipids (Y) by the yeast DBVPG 5870.
View Article and Find Full Text PDFThe use of Phase Change Material (PCM) for improving building indoor thermal comfort and energy saving has been largely investigated in the literature in recent years, thus confirming PCM’s capability to reduce indoor thermal fluctuation in both summer and winter conditions, according to their melting temperature and operation boundaries. Further to that, the present paper aims at investigating an innovative use of PCM for absorbing heat released by cement during its curing process, which typically contributes to micro-cracking of massive concrete elements, therefore compromising their mechanical performance during their service life. The experiments carried out in this work showed how PCM, even in small quantities (i.
View Article and Find Full Text PDF