Bacterial genomes contain a plethora of secondary replicons of divergent size. Circular replicons must carry a system for resolving dimeric forms, resulting from recombination between sister copies. These systems use site-specific recombinases.
View Article and Find Full Text PDFAntibiotic-resistant infections are a pressing clinical challenge. Plasmids are known to accelerate the emergence of resistance by facilitating horizontal gene transfer of antibiotic resistance genes between bacteria. We explore this question in Acinetobacter baumannii, a globally emerging nosocomial pathogen responsible for a wide range of infections with a worrying accumulation of resistance, particularly involving plasmids.
View Article and Find Full Text PDFIn bacteria, faithful DNA segregation of chromosomes and plasmids is mainly mediated by ParABS systems. These systems, consisting of a ParA ATPase, a DNA binding ParB CTPase, and centromere sites parS, orchestrate the separation of newly replicated DNA copies and their intracellular positioning. Accurate segregation relies on the assembly of a high-molecular-weight complex, comprising a few hundreds of ParB dimers nucleated from parS sites.
View Article and Find Full Text PDFWe describe here a new family of IS which are related to IS1202, originally isolated from Streptococcus pneumoniae in the mid-1990s and previously tagged as an emerging IS family in the ISfinder database. Members of this family have impacted some important properties of their hosts. We describe here another potentially important property of certain family members: specific targeting of xrs recombination sites.
View Article and Find Full Text PDF