Mycolic acids are key components of the complex cell envelope of . These fatty acids, conjugated to trehalose or to arabinogalactan form the backbone of the mycomembrane. While mycolic acids are essential to the survival of some species, such as , their absence is not lethal for which has been extensively used as a model to depict their biosynthesis.
View Article and Find Full Text PDFBackground: The ubiquitous Rad50 and Mre11 proteins play a key role in many processes involved in the maintenance of genome integrity in Bacteria and Eucarya, but their function in the Archaea is presently unknown. We showed previously that in most hyperthermophilic archaea, rad50-mre11 genes are linked to nurA encoding both a single-strand endonuclease and a 5' to 3' exonuclease, and herA, encoding a bipolar DNA helicase which suggests the involvement of the four proteins in common molecular pathway(s). Since genetic tools for hyperthermophilic archaea are just emerging, we utilized immuno-detection approaches to get the first in vivo data on the role(s) of these proteins in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius.
View Article and Find Full Text PDFWe showed previously that rad50 and mre11 genes of thermophilic archaea are organized in an operon-like structure with a third gene (nurA) encoding a 5' to 3' exonuclease. Here, we show that the rad50, mre11 and nurA genes from the hyperthermophilic archaeon Sulfolobus acidocaldarius are co-transcribed with a fourth gene encoding a DNA helicase. This enzyme (HerA) is the prototype of a new class of DNA helicases able to utilize either 3' or 5' single-stranded DNA extensions for loading and subsequent DNA duplex unwinding.
View Article and Find Full Text PDFWe isolated and characterized a new nuclease (NurA) exhibiting both single-stranded endonuclease activity and 5'-3' exonuclease activity on single-stranded and double-stranded DNA from the hyperthermophilic archaeon Sulfolobus acidocaldarius. Nuclease homologs are detected in all thermophilic archaea and, in most species, the nurA gene is organized in an operon-like structure with rad50 and mre11 archaeal homologs. This nuclease might thus act in concert with Rad50 and Mre11 proteins in archaeal recombination/repair.
View Article and Find Full Text PDFThe structural gene TRM1 encoding tRNA(guanine 26, N (2), N (2))-dimethyltransferase (Trm1p) of the hyperthermophilic archaeon Pyrococcus furiosus was cloned and expressed in Escherichia coli. The corresponding recombinant enzyme (pfTrm1p) with a His6-tag at the N terminus was purified to homogeneity in three steps. The enzyme has a native molecular mass of 49 kDa (as determined by gel filtration) and is very stable to heat denaturation (t1/2at 95 degrees C is two hours).
View Article and Find Full Text PDF