Publications by authors named "F Clarac"

Studies on living turtles have demonstrated that shells are involved in the resistance to hypoxia during apnea via bone acidosis buffering; a process which is complemented with cutaneous respiration, transpharyngeal and cloacal gas exchanges in the soft-shell turtles. Bone acidosis buffering during apnea has also been identified in crocodylian osteoderms, which are also known to employ heat transfer when basking. Although diverse, many of these functions rely on one common trait: the vascularization of the dermal shield.

View Article and Find Full Text PDF

The crocodylians are ectothermic semi-aquatic vertebrates which are assessed to have evolved from endothermic terrestrial forms during the Mesozoic. Such a physiological transition should have involved modifications in their cardio-vascular system allowing to increase the heat transfers with the surrounding environment by growing a peripheral vascularization which would be mainly located in the dermal skeleton: the dermatocranium and the osteoderms. In order to assess the implication of these anatomical regions in thermal exchanges, we have recorded the temperature above a set of representative skin areas in order to draw comparisons between the skull, the osteoderms, and the rest of the body parts which present either none or residual dermal ossification.

View Article and Find Full Text PDF

In order to assess the implication of the crocodylomorph ornamented osteoderms on the skin conduction during basking, we have performed three dimensional modeling and finite element analyses on a sample which includes both extant dry bones and well-preserved fossils tracing back to the Early Jurassic. In purpose to reveal the possible implication of the superficial ornamentation on the osteoderm heat conduction, we repeated the simulation on an equivalent set of smoothed 3D-modeled osteoderms. The comparison of the results evidenced that the presence of the apical sculpture has no significant impact on the osteoderm global conduction.

View Article and Find Full Text PDF

Vascularization in the core of crocodylian osteoderms, and in their superficial pits has been hypothesized to be a key feature involved in physiological thermoregulation and/or acidosis buffering during anoxia (apnea). However, up to now, there have been no quantitative data showing that the inner, or superficial, blood supply of the osteoderms is greater than that occurring in neighboring dermal tissues. We provide such data: our results clearly indicate that the vascular networks in both the osteoderms and the pits forming their superficial ornamentation are denser than in the overlying dermis.

View Article and Find Full Text PDF

Two successive mechanisms have been described in perichondral ossification: (1) in static osteogenesis, mesenchymal cells differentiate into stationary osteoblasts oriented randomly, which differentiate into osteocytes in the same site; (2) in dynamic osteogenesis, mesenchymal cells differentiate into osteoblasts that are all oriented in the same direction and move back as they secrete collagen fibers. This study is aimed at testing the hypothesis that the ontogenetic sequence static then dynamic osteogenesis observed in the chicken and in the rabbit is homologous and was acquired by the last common ancestor of amniotes or at a more inclusive node. For this we analyze the developmental patterns of Pleurodeles (Caudata, Amphibia) and those of the lizard Pogona (Squamata, Lepidosauria).

View Article and Find Full Text PDF