Glioblastoma (GBM) is the most deadly primary brain tumour and is a paradigmatic example of heterogeneous cancer. Although expanding data propose the phenotypic plasticity exhibited by glioblastoma cells, as a critical feature involved in the tumour development and posttherapy recurrence, the central machinery responsible for their aggressiveness remains elusive. Despite decades of research, the complex biology of the glioblastoma is still unknown.
View Article and Find Full Text PDFThe recent introduction of the "precision medicine" concept in oncology pushed cancer research to focus on dynamic measurable biomarkers able to predict responses to novel anticancer therapies in order to improve clinical outcomes. Recently, the involvement of extracellular vesicles (EVs) in cancer pathophysiology has been described, and given their release from all cell types under specific stimuli, EVs have also been proposed as potential biomarkers in cancer. Among the techniques used to study EVs, flow cytometry has a high clinical potential.
View Article and Find Full Text PDFIn the pathophysiology of neurodegenerative disorders, the role of misfolded protein deposition leading to neurodegeneration has been primarily discussed. In the last decade, however, it has been proposed a parallel involvement of innate immune activation, chronic inflammation and adaptive immunity in the neurodegeneration mechanisms triggered by proteinopathies. New insights in the neurodegenerative field strongly suggest a role for the immune system in the pathophysiology of neurodegenerative disorders.
View Article and Find Full Text PDFRegulatory T Cells (Tregs) are a T-lymphocyte subset involved in the maintenance of immune peripheral tolerance. Despite evidence of the adaptive immune system's role in Alzheimer's Disease (AD), the involvement of Tregs is still not clear. We focused on the Flow-Cytometry analysis of the Treg frequencies and phenotypes in the AD.
View Article and Find Full Text PDF